

Informal Dispute Resolution Presentation By Fields Brook Action Group To U.S. Environmental Protection Agency

Regarding

Detrex – Fields Brook DNAPL Issues

May 31, 2006 Cleveland, Ohio

Fields Brook Consent Decree Obligations

- FBAG required to perform Remedial Action and then implement O&M Plan
- O&M Plan only addresses monitoring at site (no excavation requirement stated)
- Performance Standards limited to areas of exposure as follows:
 - FWA Top 1 foot of soil
 - SOU Scour Zone of Brook sediment
- Traditional "reopeners" not in Consent Decree

Fields Brook Consent Decree Obligations

- FBAG has completed remediation of SOU and FWA in compliance with CD/SOW
 - Historical contamination excavated to cutlines in SOU and FWA soils
 - Finding of completion issued by U.S. EPA 9/30/03
- Response actions at source control properties excluded from CD (paragraph 85)
- Response actions for source control properties to prevent recontamination were conducted under separate SC Order (para. W, X)

Detrex Source Control Obligations

- Source Control RI/FS and 90% Design documents concluded that DNAPL at the Detrex facility had the potential to recontaminate Fields Brook sediment and DS Tributary (UAO paragraphs 36, 44, and 2004 Five Year Review)
- Detrex was required to design and implement source control at its facility to prevent DNAPL recontamination to Fields Brook and DS Tributary (UAO para. 45)

Detrex Source Control Obligations

- The data indicate that the DNAPL discovered in Fields Brook in 2005 has the same chemical constituents as the pooled DNAPL on the Detrex site and that excavated in 2001
- Current conditions result from a failure of source control at the Detrex facility after completion of remediation of SOU and FWA by the FBAG

Overview of Detrex Site Conditions

- 250,000 to 500,000 gallons of pooled/mobile DNAPL (based on Detrex DNAPL "plume" definition) remain in the subsurface at the Detrex facility - not addressed by source control activities to date
- This DNAPL pool has not reached residual state and is moving through multiple pathways in the subsurface formation(s) from the source area to adjacent properties

Overview of Detrex Site Conditions

- Source control actions by Detrex have not prevented DNAPL migration to Fields Brook, DS Tributary and other areas
- Unless effective source control actions are implemented by Detrex at its facility, DNAPL will continue to recontaminate Fields Brook, DS Tributary and other areas

Causes of Detrex Source Control Failure

- DNAPL was not confined to northeast and north central portion of facility as assumed by Detrex (SC RI/FS 4.3.9)
 - DNAPL movement is not consistent with groundwater flow
 - DNAPL present at multiple locations at and adjacent to facility and it is moving
 - Extraction well system was inadequate and ineffective

Causes of Detrex Source Control Failure

- DNAPL "Plume" mapped by Detrex understated extent of pooled DNAPL locations
 - DNAPL present at slurry wall when constructed
 - DNAPL "Plume" map does not incorporate other known locations at RMI property, slurry wall and CEI underground cable line and old Detrex outfall

Causes of Detrex Source Control Failure

- Geologic site model was incorrect, unsupported by the data and failed to reflect pathways from DNAPL source area to Fields Brook
- Slurry wall system does not contain or prevent DNAPL from migrating off the Detrex facility

2005 DNAPL Identification and Delineation Study by FBAG

Elements of the investigation

- DNAPL discovered during routine O&M activities
- Review of historical documents
- Mapping of the clay lacustrine layer using approximately 160 + Geoprobe ® borings
- Field screening (headspace PID readings)
- Trenching parallel to and across Fields Brook
- DNAPL and soil sampling with limited dye testing
- Independent evaluations by DNAPL experts including visual observations

2005 DNAPL Study Findings

- 9 locations of pooled (mobile) DNAPL in EUs 8, 6 and 5, including
 - Surficial pooled DNAPL at the base of the State Road Sewer and DS Tributary (as it crosses State Road)
 - DNAPL chemically consistent with the material removed in 2001 that originated from Detrex facility

Containment of DNAPL Migration Along Fields Brook

- Three containment trenches were constructed in Fields Brook
- Two trenches for each potential pathway along Fields Brook
- Each containment trench was constructed so that any DNAPL migrating along Fields
 Brook would be contained and detected
- Results no DNAPL found to date in trenches

What FBAG did in 2001 to Clean up DNAPL Contamination

- Installed 33 trenches, 18 pits and 122 geoprobe borings to delineate extent of DNAPL and define excavation areas
- Excavated approximately 28,000 cubic yards of soil to a depth up to 6 feet in Fields Brook and flood plain areas
- Removed all pooled DNAPL at the site based on visual observations or with high PID readings

Extent of FBAG 2000/2001Investigation

2001 Remedial Action

Comparison of 2001 Removal vs. 2005 Locations EU-8

Comparison of 2001 Removal vs. 2005 Locations EU-6

DETREX REMEDIAL SYSTEM DESIGN WAS BASED ON INCORRECT ASSESSMENT OF SITE CONDITIONS

- Geologic site model was incorrect
- Depiction of DNAPL "plume" was incorrect
- Slurry wall was installed in wrong location
- No containment between DNAPL source area and Fields Brook

GEOLOGIC DESCRIPTION OF SITE

Location of Geologic Cross-Section

Geologic Cross-Section

DETREX DEPICTION OF THE GEOLOGY WAS INCORRECT AND NOT SUPPORTED BY THE DATA

DETREX Top of Till Map Is Incorrect

Project: Fields Brook Superfund Site - Ashtabula, Ohio

Log of Boring DETMW04S

Project Number: 86C3609K

Boring Location: Detrex Corporation

Sheet 1 of 1

Date(s) Drilled	1/4/93, 1/5/93	Logged M.T. Schmidt	Checked J.A. Ozimek
Drilling Method	Hollow stem auger	Auger Bit Size/Type (in. I.D.) 4.25	Approx. Surface 632.5. ==
Drill Rig Type	Failing F-7	Drilled Lahti Drilling	Total Depth 15.0
Groundwater Elevation (feet	. MSL) 627.30 7/27/93	Number of Samples Collected: 6 Analyzed: 2	Sampler Continuous sample
Diameter of Hole (inches)	8.25 Diameter of Well (inches) 2	Type of Well Casing PVC riser /Stainless Steel Screen	
Type of Sand Pack	20 mesh	Type/Thickness 1 ft bentonite pellets.	
Comments			Top of Well Casing 634,44

SAMPLES Elevation, feet MATERIAL DESCRIPTION REMARKS Crushed limestone GRAVEL (FILL). Very soft, moist, brown, CLAY (FILL). 630 100 Sample sent to Lab: CB04DS 30.0 Soft, moist, brown and gray mottled Sity CLAY [LACUSTRINE]. Stiff, moist, brown and gray mottled CLAY. mottling [LACUSTRINE]. Very stiff, moist, brown with gray mottling Sity CLAY [LACUSTRINE]. 625 200.0 Very stiff, moist, brown with gray mottl CLAY, with laminations of SILT. 25.0 620 F 100 3.0-3.5 Sample sent to Lab: CB04FS Becomes gray with slity fine SAND laminations (LACUSTRINE). 15-END OF BORING at 15 feet. 615 20-610 25-605 ·Woodward-Clyde Consultants 🕰 Figure

--- Surface elevation = 632.9 ft

Depth of Boring = 15 ft

Bottom of hole elevation = 617.9 ft

Elevation used on Detrex map was 5 ft below bottom elevation, id est, 612.9 ft

Actual Well Locations Where Till Was Shown on Boring Logs

The Detrex Geologic Site Model Was Incorrect and the Ridge in the Till Did Not Stop DNAPL Migration to Fields Brook

DETREX DEPICTION OF DNAPL SOURCE AREA THAT WAS SUBMITTED TO USEPA IN 2000 WAS INCORRECT

Locations of DNAPL Outside of the Detrex Source Area That Were Known in 2000 and Should Have Been Included in the Source Area Depiction

THE SLURRY WALL IS IN THE WRONG LOCATION BECAUSE IT WAS NOT INSTALLED DOWNGRADIENT OF DNAPL MIGRATION

DNAPL Was Found at the Slurry Wall When It Was Installed in 2000/2001 – The Wall is in the Wrong Location

DNAPL Was Found Beyond the Slurry Wall in the DS Tributary in 2005 – The Slurry Wall Has Not Stopped DNAPL Migration From the Detrex Source Area

Source Control by Detrex Does Not Conform with the 1997 ROD

- 1997 ROD Requirements for Detrex Source Control
 - Construct slurry wall (approx 1500 feet long) in a location beyond the leading edge of the DNAPL
 - Compatibility Testing of slurry wall material with DNAPL and other COCs
 - Installation of approximately 40 vacuum-enhanced extraction wells
- Actual Source Control Efforts 2000 2002
 - Installed a slurry wall (approx. 450 feet long) in DNAPL
 - No compatibility testing
 - Installed 12 vacuum-enhanced extraction wells
 - (Only 3-4 operate efficiently)
 - Extracted approx. 9700 gallons of DNAPL over the 3 years (out of an estimated 250,000 to 500,000 gallons)

TILL LAYER DOES NOT "CONTROL" DNAPL MIGRATION

- DNAPL migrates on top of the lacustrine clay and through the clay.
- DNAPL migrates on top of the till and through the till layer.

DNAPL is in the Lacustrine Clay Outside of the Original Disposal Area

DNAPL Migration From the Detrex Source Area to Fields Brook

DNAPL Migration From the Detrex Source Area to Fields Brook

Location of Cross Section through DNAPL

Cross Section View

DNAPL Migration From the Detrex Source Area to Fields Brook

Summary of Detrex Source Control Failures

- The Geologic Site Model used by Detrex was incorrect – DNAPL migration to Fields Brook is continuing
- The map of the DNAPL "plume" submitted by Detrex to U.S. EPA did not encompass the entire DNAPL source area
- The slurry wall was installed in the wrong location, and DNAPL migration to the DS Tributary continues
- There is no source control between the DNAPL source area and Fields Brook, and DNAPL migration to Fields Brook continues

Characteristics of DNAPL

- DNAPL occurs in two forms: (i) <u>residual</u>
 DNAPL, and (ii) <u>pooled</u> DNAPL
- Residual DNAPL disconnected globules that are <u>immobile</u>
- Pooled DNAPL will continue to migrate until it reaches a state of equilibrium (pool provides driving force)

Residual and Pooled DNAPL

DNAPL Migration Patterns

- DNAPLs migrate in a very tortuous, heterogeneous fashion
- DNAPL migration pathways are not correlated with groundwater flow
- Residual and pooled DNAPL rarely observed at sites (EPA, 1992)
- DNAPL source areas are not 'plumes' (DNAPL is distributed heterogeneously)
- The fact that DNAPL found in wells at Detrex indicates very large quantities are present at the facility

2005 DNAPL Observations

Restored Brook Cross Section

Figure 3
Conceptual Post Remedy Cross Section of Fields Brook

Flood Plain

Conceptual x-Section Fields Brook Post Remediation.pdf

DNAPL in Floodplain/Brook in 2005

- DNAPL found 6'-8'below ground surface in floodplain (2'-4'below stream bed)
- No evidence of 'top-down' migration from streambed
- Subsurface migration pathways: top of clay and till, sand seams and fractures (historically and at present)

Trenching Activities

Sheen in Trench at Various Locations

2001 Remediation met or exceeded EPA approved cleanup standards in SOU and FWA

- SOU: All sediment in SOU within EUs 6 and 8 excavated and replaced with clean materials
- FWA: Comprehensive investigation undertaken to define DNAPL areas
 - 51 test pits/trenches and 122 Geoprobes
 - Visual DNAPL and PID headspace recorded
 - Cut lines defined using these data

2001 Remediation met or exceeded EPA approved cleanup standards in SOU and FWA

- Conservative approach used to remediate FWA
 - Excavation extended beyond cut lines if mobile
 DNAPL observed or PID head space > 500 ppm
 - PID threshold of 500 ppm was conservative and removed residual DNAPL, whereas 2001 ESD only required removal of mobile DNAPL
 - Excavation extended up to 3 feet into lacustrine clay, whereas ESD only required excavation to extend 6 inches into clay

2001 Remediation met or exceeded EPA approved cleanup standards in SOU and FWA

- EPA acknowledged that "DNAPL impacted soils would be left behind" in the FWA
- The 2001 ESD stated that this would be consistent with the "depth of scour" approach
 - because the residual contamination is below a depth where human contact is likely"
- Selected remedy was predicated on Detrex preventing migration of new DNAPL from its source area

DNAPL left behind in the FWA could not account for 2005 DNAPL observations

- Residual DNAPL by definition consists of disconnected globules and is <u>immobile</u>
- There are no data to support that pool(s)
 with sufficient mass required to account for
 the 2005 DNAPL observations were left
 behind